skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Barrett, Clark"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Domain-specific languages for hardware can significantly enhance designer productivity, but sometimes at the cost of ease of verification. On the other hand, ISA specification languages are too static to be used during early stage design space exploration. We present PEak, an open-source hardware design and specification language, which aims to improve both design productivity and verification capability. PEak does this by providing a single source of truth for functional models, formal specifications, and RTL. PEak has been used in several academic projects, and PEak-generated RTL has been included in three fabricated hardware accelerators. In these projects, the formal capabilities of PEak were crucial for enabling both novel design space exploration techniques and automated compiler synthesis. 
    more » « less
    Free, publicly-accessible full text available November 12, 2025
  2. Platzer, André; Rozier, Kristin Yvonne; Pradella, Matteo; Rossi, Matteo (Ed.)
    Abstract Stable infiniteness, strong finite witnessability, and smoothness are model-theoretic properties relevant to theory combination in satisfiability modulo theories. Theories that are strongly finitely witnessable and smooth are calledstrongly politeand can be effectively combined with other theories. Toledo, Zohar, and Barrett conjectured that stably infinite and strongly finitely witnessable theories are smooth and therefore strongly polite. They called counterexamples to this conjectureunicorn theories, as their existence seemed unlikely. We prove that, indeed, unicorns do not exist. We also prove versions of the Löwenheim–Skolem theorem and the Łoś–Vaught test for many-sorted logic. 
    more » « less
  3. Platzer, Andre; Rozier, Kristin Yvonne; Pradella, Matteo; Rossi, Matteo (Ed.)
    Abstract Great minds have long dreamed of creating machines that can function as general-purpose problem solvers. Satisfiability modulo theories (SMT) has emerged as one pragmatic realization of this dream, providing significant expressive power and automation. This tutorial is a beginner’s guide to SMT. It includes an overview of SMT and its formal foundations, a catalog of the main theories used in SMT solvers, and illustrations of how to obtain models and proofs. Throughout the tutorial, examples and exercises are provided as hands-on activities for the reader. They can be run using either Python or the SMT-LIB language, using either thecvc5or the Z3 SMT solver. 
    more » « less
  4. Narodytska, Nina; Ruemmer, Philipp (Ed.)
    Deep reinforcement learning (DRL) is a powerful machine learning paradigm for generating agents that control autonomous systems. However, the “black box” nature of DRL agents limits their deployment in real-world safety-critical applications. A promising approach for providing strong guarantees on an agent's behavior is to use Neural Lyapunov Barrier (NLB) certifcates, which are learned functions over the system whose properties indirectly imply that an agent behaves as desired. However, NLB-based certifcates are typically diffcult to learn and even more diffcult to verify, especially for complex systems. In this work, we present a novel method for training and verifying NLB-based certifcates for discrete-time systems. Specifcally, we introduce a technique for certifcate composition, which simplifes the verifcation of highly-complex systems by strategically designing a sequence of certifcates. When jointly verifed with neural network verifcation engines, these certifcates provide a formal guarantee that a DRL agent both achieves its goals and avoids unsafe behavior. Furthermore, we introduce a technique for certifcate fltering, which signifcantly simplifes the process of producing formally verifed certifcates. We demonstrate the merits of our approach with a case study on providing safety and liveness guarantees for a DRL-controlled spacecraft. 
    more » « less
  5. In recent years, deep reinforcement learning (DRL) approaches have generated highly successful controllers for a myriad of complex domains. However, the opaque nature of these models limits their applicability in aerospace systems and sasfety-critical domains, in which a single mistake can have dire consequences. In this paper, we present novel advancements in both the training and verification of DRL controllers, which can help ensure their safe behavior. We showcase a design-for-verification approach utilizing k-induction and demonstrate its use in verifying liveness properties. In addition, we also give a brief overview of neural Lyapunov Barrier certificates and summarize their capabilities on a case study. Finally, we describe several other novel reachability-based approaches which, despite failing to provide guarantees of interest, could be effective for verification of other DRL systems, and could be of further interest to the community. 
    more » « less
  6. Gurfinkel, Arie; Ganesh, Vijay (Ed.)
    Abstract Satisfiability modulo finite fields enables automated verification for cryptosystems. Unfortunately, previous solvers scale poorly for even some simple systems of field equations, in part because they build a full Gröbner basis (GB) for the system. We propose a new solver that uses multiple, simpler GBs instead of one full GB. Our solver, implemented within the cvc5 SMT solver, admits specialized propagation algorithms, e.g., for understanding bitsums. Experiments show that it solves important bitsum-heavy determinism benchmarks far faster than prior solvers, without introducing much overhead for other benchmarks. 
    more » « less
  7. Nadel, Alexander; Rozier, Kristin Yvonne (Ed.)
    Syntax-guided synthesis (SyGuS) is a recent software synthesis paradigm in which an automated synthesis tool is asked to synthesize a term that satisfies both a semantic and a syntactic specification. We consider a special case of the SyGuS problem, where a term is already known to satisfy the semantic specification but may not satisfy the syntactic one. The goal is then to find an equivalent term that additionally satisfies the syntactic specification, provided by a context-free grammar. We introduce a novel procedure for solving this problem which leverages pattern matching and automated discovery of rewrite rules. We also provide an implementation of the procedure by modifying the SyGuS solver embedded in the cvc5 SMT solver. Our evaluation shows that our new procedure significantly outperforms the state of the art on a large set of SyGuS problems for standard SMT-LIB theories such as bit-vectors, arithmetic, and strings. 
    more » « less
  8. Avni, Guy; Giacobbe, Mirco; Johnson, Taylor T; Katz, Guy; Lukina, Anna; Narodytska, Nina; Schilling, Christian (Ed.)
    Quantization replaces floating point arithmetic with integer arithmetic in deep neural networks, enabling more efficient on-device inference with less power and memory. However, it also brings in loss of generalization and even potential errors to the models. In this work, we propose a parallelization technique for formally verifying the equivalence between quantized models and their original real-valued counterparts. In order to guarantee both soundness and completeness, mixed integer linear programming (MILP) is deployed as the baseline technique. Nevertheless, the incorporation of two networks as well as the mixture of integer and real number arithmetic make the problem much more challenging than verifying a single network, and thus using MILP alone is inadequate for the non-trivial cases. To tackle this, we design a distributed verification technique that can leverage hundreds of CPUs on high-performance computing clusters. We develop a two-tier parallel framework and propose property- and output-based partition strategies. Evaluated on perception networks quantized with PyTorch, our approach outperforms existing methods in successfully verifying many cases that are otherwise considered infeasible. 
    more » « less
  9. Polite theory combination is a method for obtaining a solver for a combination of two (or more) theories using the solvers of each individual theory as black boxes. Unlike the earlier Nelson–Oppen method, which is usable only when both theories are stably infinite, only one of the theories needs to be strongly polite in order to use the polite combination method. In its original presentation, politeness was required from one of the theories rather than strong politeness, which was later proven to be insufficient. The first contribution of this paper is a proof that indeed these two notions are different, obtained by presenting a polite theory that is not strongly polite. We also study several variants of this question. The cost of the generality afforded by the polite combination method, compared to the Nelson–Oppen method, is a larger space of arrangements to consider, involving variables that are not necessarily shared between the purified parts of the input formula. The second contribution of this paper is a hybrid method (building on both polite and Nelson–Oppen combination), which aims to reduce the number of considered variables when a theory is stably infinite with respect to some of its sorts but not all of them. The time required to reason about arrangements is exponential in the worst case, so reducing the number of variables considered has the potential to improve performance significantly. We show preliminary evidence for this by demonstrating significant speed-up on a smart contract verification benchmark. 
    more » « less
  10. Sattler, Uli; Suda, Martin (Ed.)
    This work is a part of an ongoing effort to understand the relationships between properties used in theory combination. We here focus on including two properties that are related to shiny theories: the finite model property and stable finiteness. For any combination of properties, we consider the question of whether there exists a theory that exhibits it. When there is, we provide an example with the simplest possible signature. One particular class of interest includes theories with the finite model property that are not finitely witnessable. To construct such theories, we utilize the Busy Beaver function. 
    more » « less